Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system.

نویسندگان

  • Samuel M Venable
  • Bradley D Duncan
  • Matthew P Dierking
  • David J Rabb
چکیده

Holographic aperture ladar (HAL) is a variant of synthetic aperture ladar (SAL). The two processes are related in that they both seek to increase cross-range (i.e., the direction of the receiver translation) image resolution through the synthesis of a large effective aperture. This is in turn achieved via the translation of a receiver aperture and the subsequent coherent phasing and correlation of multiple received signals. However, while SAL imaging incorporates a translating point detector, HAL takes advantage of a two-dimensional translating sensor array. For the research presented in this article, a side-looking stripmap HAL geometry was used to sequentially image a set of Ronchi ruling targets. Prior to this, theoretical calculations were performed to determine the baseline, single subaperture resolution of our experimental, laboratory-based system. Theoretical calculations were also performed to determine the ideal modulation transfer function (MTF) and expected cross-range HAL image sharpening ratio corresponding to the geometry of our apparatus. To verify our expectations, we first sequentially captured an oversampled collection of pupil plane field segments for each Ronchi ruling. A HAL processing algorithm incorporating a high-precision speckle field registration process was then employed to phase-correct and reposition the field segments. Relative interframe piston phase errors were also removed prior to final synthetic image formation. By then taking the Fourier transform of the synthetic image intensity and examining the fundamental spatial frequency content, we were able to produce experimental modulation transfer function curves, which we then compared with our theoretical expectations. Our results show that we are able to achieve nearly diffraction-limited results for image sharpening ratios as high as 6.43.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FMCW Differential Synthetic Aperture Ladar for Turbulence Mitigation

Synthetic Aperture (SA) imaging, including holographic aperture ladar (HAL), synthetic aperture ladar (SAL), and combinations thereof; are promising solutions for long range imaging applications. One of the major difficulties with real-world SA imaging is coherently processing the image information in the presence of atmospheric turbulence. Differential SAL imaging was proposed and patented in ...

متن کامل

Aperture undersampling using compressive sensing for synthetic aperture stripmap imaging

Synthetic aperture imaging is a high-resolution imaging technique employed in radar and sonar applications, which construct a large aperture by constantly transmitting pulses while moving along a scene of interest. In order to avoid azimuth image ambiguities, spatial sampling requirements have to be fulfilled along the aperture trajectory. The latter, however, limits the maximum speed and, ther...

متن کامل

Synthetic Aperture Digital Holography

Synthetic aperture is a well-known super-resolution technique which extends the resolution capabilities of an imaging system beyond the theoretical Rayleigh limit dictated by the system's actual aperture. Using this technique, several patterns acquired by an aperture-limited system, from various locations, are tiled together to one large pattern which could be captured only by a virtual system ...

متن کامل

Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements.

We present a new lensless incoherent holographic system operating in a synthetic aperture mode. Spatial resolution exceeding the Rayleigh limit of the system is obtained by tiling digitally several Fresnel holographic elements into a complete Fresnel hologram of the observed object. Each element is acquired by the limited-aperture system from different point of view. This method is demonstrated...

متن کامل

Evaluating the deformation monitoring capability of a ground based SAR system with MIMO antenna

By increasing the applicability of ground-based SAR (GBSAR) systems in geoscience and remote sensing, the development and evaluation of new systems have gained attention. GBSAR systems can be utilized for monitoring areas that are hard to or cannot be seen by the airborne or spaceborne systems. Furthermore, they have better spatial and temporal resolutions and are cost-effective and easy to imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 51 22  شماره 

صفحات  -

تاریخ انتشار 2012